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(a) Demonstration collection in mixed reality (b) Learned dexterous policies

Fig. 1: We present HOLO-DEX, a framework that (a) collects high-quality demonstration data by placing human teachers in an immersive
mixed reality world, and then (b) learns visual policies from a handful of these demonstrations to solve dexterous manipulation tasks.

Abstract— A fundamental challenge in teaching robots is to
provide an effective interface for human teachers to demon-
strate useful skills to a robot. This challenge is exacerbated
in dexterous manipulation, where teaching high-dimensional,
contact-rich behaviors often require esoteric teleoperation tools.
In this work, we present HOLO-DEX, a framework for dexter-
ous manipulation that places a teacher in an immersive mixed
reality through commodity VR headsets. The high-fidelity hand
pose estimator onboard the headset is used to teleoperate the
robot and collect demonstrations for a variety of general-
purpose dexterous tasks. Given these demonstrations, we use
powerful feature learning combined with non-parametric imi-
tation to train dexterous skills. Our experiments on six common
dexterous tasks, including in-hand rotation, spinning, and bottle
opening, indicate that HOLO-DEX can both collect high-quality
demonstration data and train skills in a matter of hours. Finally,
we find that our trained skills can exhibit generalization on
objects not seen in training. Videos of HOLO-DEX are available
on https://holo-dex.github.io/.

I. INTRODUCTION

Learning-based methods have had a transformational ef-
fect in robotics on a wide range of domains from manipula-
tion [1, 2], locomotion [3, 4, 5], and aerial robotics [6, 7, 8].
Such methods often produce policies that input raw sensory
observations and output robot actions. This circumvents
challenges in developing state-estimation modules, modeling
object properties and tuning controller gains, which requires
significant domain expertise. Even with the steep progress
in robot learning, we are still long way off from dexterous
robots that can solve arbitrary robot tasks akin to methods
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in game play [9, 10], text generation [11, 12] or few-shot
vision [13, 14].

To understand what might be missing in robot learning, we
need to ask a central question: How do we collect training
data for our robots? One option is to collect data on the robot
through self-supervised data collection strategies. While this
results in robust behaviors [15, 16, 17, 18], they often require
extensive real-world interactions in the order of thousands
of hours even for relatively simple manipulation tasks [19].
An alternate option is to train on simulated data and then
transfer to the real robot (Sim2Real). This allows for learning
complex robotic behaviors multiple orders of magnitude
faster than on-robot learning [20, 21]. However, setting up
simulated robot environments and specifying simulator pa-
rameters often requires extensive domain expertise [22, 23].

A third, more practical option to collect data is by
asking human teachers to provide demonstrations [24, 25].
Robots can then be trained to quickly imitate the demon-
strated data. Such imitation methods have recently shown
promise in a variety of challenging dexterous manipulation
problems [26, 27, 28]. However, there lies a fundamental
limitation in most of these works – collecting high-quality
demonstration data for dexterous robots is hard! They either
require expensive gloves [29], extensive calibration [27], or
suffer from monocular occlusions [28].

In this work, we present HOLO-DEX, a new framework
to collect demonstration data and train dexterous robots. It
uses VR headsets (e.g. Quest 2) to put human teachers in an
immersive virtual world. In this virtual world, the teacher can
view a robotic scene from the eyes of a robot, and control
it using their hands through inbuilt pose detectors. HOLO-
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DEX allows humans to seamlessly provide robots with high-
quality demonstration data through a low-latency observa-
tional feedback system. HOLO-DEX offers three benefits:
(a) Compared to self-supervised data collection methods,
it allows for rapid training without reward specification as
it is built on powerful imitation learning techniques; (b)
Compared to Sim2Real approaches, our learned policies are
directly executable on real robots since they are trained on
real data; (c) Compared to other imitation approaches, it
significantly reduces the need for domain expertise since
even untrained humans can operate VR devices.

We experimentally evaluate HOLO-DEX on six dexterous
manipulation tasks that require performing complex, contact-
rich behavior. These tasks range from in-hand object manip-
ulation to single-handed bottle opening. Across our tasks, we
find that a teacher can provide demonstrations at an average
of 60s per demonstration using HOLO-DEX, which is 1.8×
faster than prior work in single-image teleoperation [28].
On 4/6 tasks, HOLO-DEX can learn policies that achieve
> 90% success rates. Surprisingly, we find that the dexterous
policies learned through HOLO-DEX can generalize on new,
previously unseen objects.

In summary, this work presents HOLO-DEX, a new frame-
work for dexterous imitation learning with the following
contributions. First, we demonstrate that high-quality tele-
operation can be achieved by immersing human teachers
in mixed reality through inexpensive VR headsets. Second,
we experimentally show that the demonstrations collected
by HOLO-DEX can be used to train effective, and general-
purpose dexterous manipulation behaviors. Third, we analyze
and ablate HOLO-DEX over various decisions such as the
choice of hand tracker and imitation learning methods. Fi-
nally, we will release the mixed reality API, demonstrations
collected, and training code associated with HOLO-DEX on
https://holo-dex.github.io/.

II. RELATED WORK

Our framework builds upon several important works in
robot learning, imitation learning, teleoperation and dexter-
ous manipulation. In this section, we briefly describe prior
research that is most relevant to ours.

A. Methodologies for Teaching Robots

There are several approaches one can take to teach robots.
Reinforcement Learning (RL) [30, 31, 32] can train policies
to maximize rewards while collecting data in an automated
manner. This process often requires a roboticist to spec-
ify the reward function along with ensuring safety during
self-supervised data collection [16, 15]. Furthermore, such
approaches are often sample-inefficient and might require
extensive simulation training for optimizing complex skills.

Simulation to Real (Sim2Real) approaches focus on train-
ing RL policies in simulation, followed by transferring to the
real robot [22, 33, 34]. Such a methodology of robot training
has received significant success owing to the improvements
in modern robot simulators. Sim2Real still requires signifi-
cant human involvement as every task needs to be carefully

modeled in the simulator. Moreover, even during training
special techniques are required to ensure that the resulting
policies can transfer to the real robot [21, 35, 36, 37].

Imitation learning approaches focus on training poli-
cies from demonstrations provided by an expert. Behavior
Cloning (BC) is an offline technique that trains a pol-
icy to imitate the expert behavior in a supervised man-
ner [24, 38, 39, 40]. Recently, non-parametric imitation
approaches have shown promise in learning from fewer
demonstrations [41, 42, 28]. Another set of imitation learning
is Inverse Reinforcement Learning (IRL) [43, 25, 44]. Here,
a reward function is inferred from demonstrations, followed
by using RL to optimize the inferred reward. While HOLO-
DEX is geared towards offline imitation, the demonstrations
we collect are compatible with IRL approaches as well.

B. Dexterous Teleoperation Frameworks

To effectively use imitation learning for dexterous ma-
nipulation we need to obtain accurate hand poses from
a human teacher. There are several approaches to gather
demonstrations for dexterous tasks. Using a custom glove
to measure a user’s hand movements such as CyberGlove
[29, 45] or Shadow Dexterous Glove [46] has been a popular
solution. However, although such gloves have high accuracy,
they can be expensive and require significant calibration
effort. Vision-based hand pose detectors have shown promise
for dexterous tasks. Some examples include using multiple
RGBD [27], single depth [47], RGB [28], and RGBD [37]
images. However, such methods either require custom cal-
ibration procedures [27] or suffer from occlusion-related
issues when using single cameras [28]. Recently, a new
generation of VR headsets has enabled advanced multi-
camera hand pose detection [48] that gave promising results
in [49, 50]. This enhancement provides a robust solution
that is significantly cheaper compared to CyberGlove and
requires little calibration. While VR tools have been used
to collect demonstrations [51, 52] for low-dimensional end-
effector control, HOLO-DEX shows that the VR headsets can
be used for high-dimensional control in augmented reality.
Concurrent to our work, Radosavovic et al. [53] also show
that hand tracking from VR can be used to teleoperate robot
hands albeit without using mixed reality.

C. Dexterous Manipulation

Due to its high-dimensional action space, learning com-
plex skills with dexterous multi-fingered robot hand has been
a longstanding challenge [54, 55, 56, 57]. Model-based RL
and control approaches have demonstrated significant success
on tasks such as spinning objects and in-hand manipula-
tion [58, 59]. Similarly, model-free RL approaches have
shown that Sim2Real can enable impressive skills such as
in-hand cube rotation and Rubik’s cube face turning [20, 21].
However, both learning approaches requires hand-designing
reward functions along with system identification [58] or
task-specific training procedures [21]. Coupled with long
training times, often requiring weeks [20, 21], they make
dexterous manipulation difficult to scale for general tasks.

https://holo-dex.github.io/
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Fig. 2: Overview of HOLO-DEX’s teleoperation module. Given a hand pose in the VR interface, the controller streams the keypoint data
to the robot’s server which transforms and retargets the human hand key points to the Allegro Hand. Visual feedback of the teleoperated
hand is then provided back to the VR Headset for real-time feedback.

To address the poor sample efficiency of prior learning-
based methods, several works have looked at imitation learn-
ing [60, 61]. Here, given a handful of demonstrations, sim-
ulated policies can be trained in a few hours. More recently,
such imitation-based approaches have shown success on real
robot hands [28]. HOLO-DEX takes this idea further by
improving the teaching process and demonstrating its utility
on a variety of in-hand manipulation tasks.

III. BACKGROUND ON VISUAL IMITATION LEARNING

To understand the imitation learning framework used in
HOLO-DEX, we first formalize and describe important back-
ground work in self-supervised learning and non-parametric
imitation. Together, these enable efficient imitation learning
from high-dimensional visual observations.

A. Visual Self-Supervised Learning

Self-Supervised Learning (SSL) focuses on obtaining low-
dimensional embeddings z from high-dimensional obser-
vations o [62]. Operationally, the observations (e.g. RGB
images) are fed into an encoder fθ, where θ denotes the
weights of a parametric deep network. While there are
several methods to train fθ, the central principle in many
works is to predict one ‘view’ of the observation given a
different ‘view’ of the same observation. One example of
such a learning scheme is data-augmented SSL. Here, the
observation o is augmented by applying visual augmentations
such as color jitter or random grayscale. Given two aug-
mented views of this observation o1 and o2, the correspond-
ing embeddings would be z1 ≡ fθ(o1) and z2 ≡ fθ(o2). The
training objective for fθ amounts to maximizing the mutual
information between the two embeddings I(z1, z2).

To optimize this objective, we use the BYOL [63] training
scheme, which amounts to predicting z2 ← gφ(z

1) through a
small deep model gφ called the ‘projector’. This scheme for
learning embeddings has had significant success in a variety
of domains ranging from computer vision, audio processing,

and robotics. Given its simplicity, we use BYOL to obtain
concise embeddings from our demonstrated data.

B. Non-Parametric Imitation Learning

In our framework for imitation learning we have access to
expert demonstrations in the form of DE ≡ {(oEt′ , sEt′ , aEt′ )},
where oEt′ represents the sensory observation at time t′, sEt′
represents the robot state, and aEt′ denotes the robot action
taken. Note that sEt′ does not contain information about the
object that is being manipulated. Hence, object information
needs to be inferred from observations oEt′ . Given these
demonstrations, we would like to learn a policy π(at|ot)
that follows the expert behavior DE . While there are several
strategies for optimizing π, we resort to non-parametric
approaches given their superior performance in low-data
regimes [42, 28].

Our non-parametric control framework follows
VINN [42], where given the observations oE from the
expert demonstration dataset DE , a BYOL encoder fθ
is trained. Next, the observations in the dataset are all
converted to embeddings, i.e. {oEt′ }

fθ−→ {zEt′ }. During
run time, when the robot receives an observation ot it is
embedded to zt. Then the Nearest-Neighbor (NN) example
in {(zEt′ , sEt′ , aEt′ )} is selected to be imitated. We denote
this NN example as {(zEt∗ , sEt∗ , aEt∗)}. Given a small dataset
DE , which is often the case in robotic applications, this
NN-based imitation learning provides effective learning
compared to parametric approaches such as BC.

IV. HOLO-DEX

As seen in Fig. 1, HOLO-DEX operates in two phases. In
the first phase, a human teacher uses a Virtual Reality (VR)
headset to provide demonstrations to a robot. This phase
consists of creating a virtual world for teaching, estimating
hand poses from the teacher, retargeting the teacher’s hand
pose to the robot’s hand and finally controlling the robot
hand. After a handful of demonstrations are collected in
phase one, the second phase of HOLO-DEX learns visual



Pl
an

ar
 R

ot
at

io
n

O
bj

ec
t F

lip
pi

ng
C

an
 S

pi
nn

in
g

Fig. 3: Demonstration collection process for three of our tasks. For each task, the first row shows the user’s perspective inside the VR
Headset and the second row shows the corresponding robot hand configuration.

policies to solve the demonstrated tasks. In this section, we
will describe each sub-component in detail.

A. Placing an Operator in a Virtual World

We use the Meta Quest 2 VR headset to place human
teachers in a virtual world. The headset surrounds the human
in a virtual environment at a resolution of 1832× 1920 and
a refresh rate of 72 Hz. The base version of this headset
is affordable at $399 and is relatively light at 503g. These
features allow for comfortable operation by the teacher.
Importantly, the API interface of the Quest 2 allows for
creating custom mixed reality worlds that visualizes the
robotic system along with diagnostic panels in VR. Examples
of virtual scenes are depicted in Fig. 2 and Fig. 3.

B. Hand Pose Estimation with VR Headsets

In contrast to prior work on dexterous teleoperation, using
VR headsets provides three benefits with regard to hand pose
estimation of the human teacher. First, since the Quest 2
uses 4 monochrome cameras, its hand-pose estimator [48] is
significantly more robust compared to single camera estima-
tors [64]. Second, since the cameras are internally calibrated,
they do not require specialized calibration routines that are
needed in prior multi-camera teleoperation frameworks [27].
Third, since the hand pose estimator is integrated into the
device, it can stream real-time poses at 72Hz. As noted
in prior work [27, 28], a significant challenge in dexterous
teleoperation is obtaining hand poses at both high accuracy
and a high frequency. HOLO-DEX significantly simplifies
this problem by using commercial-grade VR headsets.

C. Human to Robot Hand Pose Retargeting

Once we have extracted the teacher’s hand pose from VR,
we will need to retarget it to the robotic hand. This is done
by first computing the individual hand joint angles in the
teacher’s hand. Given these joint angles, a straightforward
method of retargeting is to directly command the robot’s
joints to the corresponding angle. In practice, this works well
for all fingers except the thumb. The thumb presents a unique
challenge to our Allegro robot hand since its morphology
does not match a human’s hand. To address this, we map
the spatial coordinates of the teacher’s thumb fingertip to the
robot’s thumb fingertip. The joint angles of the thumb are
then computed through an inverse kinematics solver. Since
the Allegro hand does not have a pinky finger, we ignore the
teacher’s pinky joints.

The overall pose retargeting procedure does not require
any calibration or user-specific tuning to collect demon-
strations. However, we find that thumb retargeting can be
improved by finding user-specific maps from their thumb to
the robot’s thumb. This entire procedure is computationally
inexpensive and can stream desired robot hand poses at 60
Hz.

D. Robot Hand Control

Our Allegro Hand is controlled asynchronously over a
ROS [65] communication framework. Given desired robot
joint positions that were computed from the retargeting
procedure, we use a PD controller to output desired torques
at 300Hz. To reduce steady-state error, we use a gravity
compensation module to compute offset torques. On latency
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Fig. 4: Successful rollouts of visual policies trained through HOLO-DEX on our six dexterous tasks.

tests, we find that when the VR headset is on the same local
network as the robot hand, we achieve latency under 100
milliseconds. Having a low error and latency is crucial for
HOLO-DEX since it allows for intuitive teleoperation of the
robot hand by the human teacher.

As the human teacher controls the robot hand, they can
see the robot change in real time (60Hz). This allows the
teacher to correct execution errors in the robot. During the
teaching process, we record observational data from three
RGBD cameras and the action information of the robot at
5Hz. We had to reduce the recording frequency due to the
large data footprint and associated bandwidth required from
recording multiple cameras.

E. Imitation Learning with HOLO-DEX Data

Once data is collected in the first phase of HOLO-DEX,
we now proceed to the second phase, where visual policies
are trained on top of this data. We employ the Imitation with
Nearest Neighbors (INN) algorithm for learning. Background
details of INN is present in Section III-B. In prior work, INN
was shown to produce state-based dexterous policies on the
Allegro hand [28]. HOLO-DEX takes this a few steps further
and demonstrates that these visual policies can generalize to
novel objects in a variety of dexterous manipulation tasks.

To select the learning algorithm for obtaining low-
dimensional embeddings (see Section III-A), we experiment
with several state-of-the-art self-supervised learning algo-
rithms [63, 66, 67, 68] and find that BYOL [63] provides
the best nearest neighbour results. Hence we select BYOL
as our base self-supervised learning method. Once BYOL is
trained on the collected demonstrations, we can run dexterous

manipulation policies on the robot by performing nearest
neighbor action retrieval (see Section III-B) to get the closest
example in the trainset (zEt∗ , a

E
t∗). To account for the slower

rate of demonstration collection, we set the action to the
difference between the succeeding state to the closest neigh-
bor and the current state, i.e. at = (sEt∗+k) − (sEt ). Here k
represents the number of states skipped during our recording
of demonstrations. Note that directly commanding aEt∗ would
fail due to our asynchronous data storage framework.

V. EXPERIMENTAL EVALUATION

Our experiments and tasks are designed to answer the
following questions:
• How long does it take HOLO-DEX to collect demon-

strations?
• How successful are policies trained by HOLO-DEX?
• How general are the skills learned by HOLO-DEX?
• How many demonstrations from HOLO-DEX are re-

quired to successfully solve dexterous tasks?

A. Dexterous Manipulation Tasks

We study six dexterous manipulation tasks that require
contact-rich, multi-fingered control for successful comple-
tion. Details of these tasks are described below.

1) Planar Rotation: Given an object placed at a random
position on the palm of the robot hand, the goal is
to rotate the object in the counter-clockwise direction
along the palm normal vector. Solving this task re-
quires the robot to make multi-fingered contacts to both
rotate and correct for deviations of the object from the
center of the hand. The task is considered a success if



the robot is able to rotate the object by 90◦ under a
minute.

2) Object Flipping: Given an object placed at a random
position on the palm of the robot, the goal is to flip
the object in the hand’s direction. Solving this task
requires the robot to make multi-fingered contacts for
grasping the top face of the object and to correct the
object when it deviates from the center of the hand.
The task is considered a success if the robot is able to
flip the object by 90◦ within a minute.

3) Can Spinning: Given a large can placed horizontally
on the palm of the robot hand, the task is to spin
the can in the counter-clockwise direction along the
palm normal vector. Solving this task requires the robot
to make synchronized multi-fingered contacts to apply
controlled torques on the curved sides of the can. The
task is considered a success if the robot is able to spin
the can by 90◦ under 30 seconds.

4) Bottle Opening: Given a bottle on a desk, the task is
to single-handedly grab the bottle and turn its lid open
using the index finger. Solving this task requires the
robot to use the index finger to grip the bottle cap and
turn it while using the non-index fingers to hold the
bottle firmly. The task is considered a success when the
robot rotates the bottle cap by 360◦ under 180 seconds.

5) Card Sliding: Given a card on a desk in front of the
hand, the task is to grab the card by sliding it off the
table and picking it up. To solve the task the robot
requires to use the thumb finger to slide the card to
the edge of the desk and the other non-thumb fingers
to grab the card from the edge. The task is considered
a success when the robot is able to lift the card off and
stably grasp it from the table under 120 seconds.

6) PostIt Note Sliding: This task is similar to card sliding,
but instead of a card we use a thicker post-it note pad
as the object to pick from the desk. To solve the task,
the robot needs to apply a firmer torque on the post-
it note pad using the thumb finger since the object
is heavier. The task is considered a success when the
robot is able to lift the card off and stably grasp it from
the table under 120 seconds.

For the Planar Rotation task we collect 120 expert demon-
strations, while for all the other tasks we collect 30 demon-
strations. Additional demonstrations for Planar Rotation are
collected to account for the relative difficulty of this task and
experimentation with different dataset sizes.

B. How long does it take to collect demonstrations?

The closest dexterous teleoperation work to ours that
uses commodity sensors is single-image teleoperation (e.g.
DIME [28]), where hand poses are detected via RGB
images to get robot joint angles. Despite its simplicity,
such single-image pose estimation [64] suffers from hand
occlusions, which results in poor teleoperation performance
on challenging manipulation tasks [27]. In Table I we show
that HOLO-DEX can collect successful demonstrations 1.8×
faster compared to DIME. For 3/6 tasks that require precise

TABLE I: Average time taken in seconds to collect a single demon-
stration on our Allegro hand using HOLO-DEX and DIME [28]

Task DIME HOLO-DEX

Expert New User Expert New User

Planar Rotation 60 150 30 125
Object Flipping 6 21 5 6
Can Spinning 15 76 10 68

Bottle Opening N/A N/A 30 48
Card Sliding N/A N/A 150 N/A

PostIt Note Sliding N/A N/A 120 N/A

3D movements, we find that single-image teleoperation is
insufficient to collect even a single demonstration.

To demonstrate the versatility of HOLO-DEX we ask five
untrained users to collect demonstrations for each of our
tasks. Unlike prior work [28, 27], no user-specific calibration
was done for this evaluation. In Table I, we see that these
users are successfully able to solve 4/6 tasks on their first
try, failing only on more difficult sliding tasks. We also find
that training on this system is quite important as it yields a
nearly 2.6× speedup in demonstration collection.

C. How successful are policies trained by HOLO-DEX?

We examine the performance of various imitation learn-
ing policies on all dexterous tasks. The imitation learning
algorithms include Behavior Cloning (BC) [24], Behavior
Cloning from pretrained representations (BC-Rep) [69] and
VINN [42]. Table II shows the success rates of each task
with different policies. We find that VINN outperforms both
Behavior Cloning algorithms on all tasks. This is in line with
prior work [42, 28] and showcases the effectiveness of non-
parametric imitation with few demonstrations. However, we
find that for the two tasks that involve sliding and picking,
the performance of VINN is quite low at 30%. We believe
this is due to our robot’s inability to sense touch, which limits
our vision-only model from performing precise actions.

TABLE II: Success rates on our Allegro hand using HOLO-DEX

Task BC BC - Rep VINN VINN
(New Objects)

Planar Rotation 0/10 0/10 10/10 35/50
Object Flipping 0/10 0/10 9/10 50/50
Can Spinning 0/10 0/10 10/10 45/50

Bottle Opening 0/10 0/10 10/10 N/A
Card Sliding 0/10 0/10 3/10 N/A

PostIt Note Sliding 0/10 0/10 3/10 N/A

D. How general are the policies learned by HOLO-DEX?

To understand the generalization capabilities of our mod-
els, we analyse the quality of the embeddings we get for a
given visual input. Interestingly, we observed that the Planar
Rotation policy’s encoder was able to generalize to the other
two in-hand manipulation tasks. We reason that this encoder
was able to exhibit this behavior since it was trained on
abundant Planar Rotation data, where the object used while
collecting demonstrations had different colors on it’s each
face and was placed on various locations.

Since our policies are vision-based and do not require
explicitly estimating the states of objects, they are compatible
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Fig. 5: On the left, we depict the object present in demonstration data. On the right, we depict the rollouts produced by running our
policies on objects that were not present in demonstration collection. Green boxes denote a successful rollout, while red boxes denote a
failure. We see that policies learned by HOLO-DEX are fairly robust to visually diverse novel objects without object-specific training.



Fig. 6: Effect of varying demonstration data with HOLO-DEX.

with objects not seen in training. We evaluate our in-hand
manipulation policies which were trained for performing
Planar Rotation, Object Flipping, and Can Spinning tasks on
10 visually and geometrically distinct objects each, with 5
rollouts for every object in different initial positions. Results
for this experiment are in Table II and are visualized in Fig. 5.
Surprisingly, for all three in-hand manipulation tasks, we
find high success rates without any additional demonstration
collection or training. We observed that the Planar Rotation
policy was able to generalize on 7 out of 10 objects, whereas
the Object Flipping and Can Spinning policies were able to
succeed at performing the task on 10 and 9 unseen objects
respectively. We believe that the policy fails to generalize on
some objects because of their visual features (object color
and shape) being very different from that of the object in
the demonstrations. This means that although we collect
demonstrations from HOLO-DEX on a single object, the
learned policies can generalize in a zero-shot manner.

E. How many demonstrations are needed to solve our tasks?

In Fig. 6 we visualize the performance on four of our
tasks across different dataset sizes. To decouple the effects
of representation learning with action prediction, we use
the same encoder (trained on all task data) for different
dataset splits. We find that for Can Spinning and Bottle
Opening, a single demonstration is sufficient to achieve high
performance, while for Planar Rotation and Object Flipping
we see steady gains in performance as we increase the
amount of demonstration data.

VI. LIMITATIONS AND DISCUSSION

We have presented HOLO-DEX, a framework that takes
some of the first steps towards immersive teaching of dex-
terous robots through VR. There are currently two limitations
of this work. First, we find that for the harder manipulation
tasks, such as sliding a card our learned policies achieve poor
performance. Integrating tactile sensing to HOLO-DEX could
remedy this issue. Second, our retargeting procedure only
applies to robots that can map to human joints. This limits
its applicability to robots with different morphologies (e.g.
aerial robots, quadrupeds, etc.). Future research on UX

design and retargeting mechanisms can enable mapping VR
control to more complex end-effectors.
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[49] T. Hentschel and J. A. Neuhöfer, “Steady hands - an evaluation
on the use of hand tracking in virtual reality training in
nursing,” in Proceedings of the 21st Congress of the Interna-
tional Ergonomics Association (IEA 2021), N. L. Black, W. P.
Neumann, and I. Noy, Eds. Cham: Springer International
Publishing, 2022, pp. 643–649.

[50] M. Salvato, N. Heravi, A. M. Okamura, and J. Bohg, “Predict-
ing hand-object interaction for improved haptic feedback in
mixed reality,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 3851–3857, 2022.

[51] Z. Gharaybeh, H. Chizeck, and A. Stewart, “Telerobotic con-
trol in virtual reality,” in OCEANS 2019 MTS/IEEE SEATTLE,
2019, pp. 1–8.

[52] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg,
and P. Abbeel, “Deep imitation learning for complex manipu-
lation tasks from virtual reality teleoperation,” in ICRA, 2018.



[53] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and
T. Darrell, “Real-world robot learning with masked visual
pre-training,” 2022. [Online]. Available: https://arxiv.org/abs/
2210.03109

[54] V. Kumar, Y. Tassa, T. Erez, and E. Todorov, “Real-time
behaviour synthesis for dynamic hand-manipulation,” in 2014
IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 6808–6815.
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