
Bridging the Human to Robot Dexterity Gap through
Object-Oriented Rewards

Irmak Guzey† Yinlong Dai Georgy Savva Raunaq Bhirangi Lerrel Pinto

New York University

object-rewards.github.io

𝒯

𝒯

Reward R(𝒯R, 𝒯H)

H
um

an
R

ob
ot

Policy

Human Video Robot Policy
R

H

Fig. 1: HUDOR generates rewards from human videos by tracking points on the manipulable object, indicated by the rainbow-colored
dots, over the trajectory. This allows for online training of multi-fingered robot hands given only a single video of a human solving the task
(left) and without robot teleoperation. To optimize the robot’s policy (middle), rewards are computed by matching the point movements
of the robot policy TR with those in the human video TH . In under an hour of online fine-tuning, our Allegro robot hand (right) is able
to open the music box.

Abstract— Training robots directly from human videos is
an emerging area in robotics and computer vision. While
there has been notable progress with two-fingered grippers,
learning autonomous tasks without teleoperation remains a
difficult problem for multi-fingered robot hands. A key reason
for this difficulty is that a policy trained on human hands
may not directly transfer to a robot hand with a different
morphology. In this work, we present HUDOR, a technique
that enables online fine-tuning of the policy by constructing
a reward function from the human video. Importantly, this
reward function is built using object-oriented rewards derived
from off-the-shelf point trackers, which allows for meaningful
learning signals even when the robot hand is in the visual
observation, while the human hand is used to construct the
reward. Given a single video of human solving a task, such
as gently opening a music box, HUDOR allows our four-
fingered Allegro hand to learn this task with just an hour of
online interaction. Our experiments across four tasks, show
that HUDOR outperforms alternatives with an average of 4×
improvement. Code and videos are available on our website
https://object-rewards.github.io/.

I. INTRODUCTION

Humans effortlessly perform a wide range of dexterous
tasks in their daily lives [1]. Achieving similar capabilities
in robots is essential for their effective deployment in the
real world. Towards this end, recent advances have enabled

†Correspondence to irmakguzey@nyu.edu.

the learning of multi-modal, long-horizon, and dexterous
behaviors for two-fingered grippers [2, 3, 4, 5] using imi-
tation learning (IL) from teleoperated robot data. However,
extending such methods to more complex tasks with multi-
fingered hands has proven challenging.

The difficulty with using teleoperation-based learning for
multi-fingered hands stems from two key issues. First, this
requires large amounts of data for moderate amounts of
robustness. For example, even tasks with two-fingered grip-
pers [6, 7, 8] often require thousands of demonstrations
to train robust policies. This data requirement is likely
greater for tasks demanding higher precision and dexterity.
Second, teleoperating multi-fingered hands is a challenging
systems problem due to the demand for lower-latency and
continuous feedback when controlling multiple degrees of
freedom [9, 10, 11].

An alternate approach that circumvents teleoperation is
to develop policies for robots using first-person videos of
humans executing tasks [12, 13, 14]. However, most previous
approaches have required either additional teleoperated robot
demonstrations [15] or human-intervened learning [16]
for fine-tuning. This extra information is often necessary
to bridge the gap between the morphological and visual
differences between human hands (as seen in human video
data) and robot hands (as observed in robot interactions).

https://object-rewards.github.io/
https://object-rewards.github.io/


In this work, we present HUDOR, a new approach to
bridge the gap between human videos and robot policies
through online imitation learning. Given a human video
and hand pose trajectories, an initial robot replay can be
generated using pose transformation and full robot inverse
kinematics. However, this initial replay often fails due to
morphological differences between human and robot hands.
HUDOR improves this initial replay through following steps:
(a) We track the points of the manipulated object in both
human and robot trajectory videos; (b) then calculate the
similarity of object motion and articulation using these
tracked point sets, (c) and finally fine-tune the initial robot
trajectory through inverse reinforcement learning. By itera-
tively refining its performance based on these comparisons,
the robot effectively imitates human actions while adapting
to its own physical constraints.

We evaluate HUDOR on four dexterous tasks, including
opening a small music box with one hand and sliding and
picking up a thin card. Our contributions can be summarized
as follows:

1) HUDOR introduces the first framework that enables
the learning of dexterous policies on multi-fingered
robot hands using only a single human video and hand
pose trajectory (Section IV).

2) HUDOR introduces a new object-oriented reward cal-
culation method that matches human and robot trajec-
tories. This approach gives 2.1× better performance
on three of our tasks than common reward functions
(Section IV-C).

3) HUDOR outperforms state-of-the-art offline imitation
learning methods for learning from human demonstra-
tions [16, 3], achieving an average improvement of
2.64×, emphasizing the need for online corrections
(Section IV-B).

Robot videos are best viewed on our website: https:
//object-rewards.github.io/.

II. RELATED WORKS

Our work draws inspiration from extensive research in
dexterous manipulation, learning from human videos, and
imitation learning. In this section, we focus our discussion
on the most pertinent contributions across these interrelated
areas.

a) Robot Learning for Dexterous Manipulation: Learn-
ing dexterous policies for multi-fingered hands has been a
long-standing challenge that has captured the interest of the
robotics learning community [17, 18, 9]. Some works have
addressed this problem by training policies in simulation
and deploying them in the real world [19, 18]. Although
this approach has produced impressive results for in-hand
manipulation [20, 21], closing the sim-to-real gap becomes
cumbersome when manipulating in-scene objects.

Other works have focused on developing different tele-
operation frameworks [22, 23, 10, 24] and training offline
policies using robot data collected through these frameworks.
While these frameworks are quite responsive, teleoperating
dexterous hands without directly interacting with objects

remains difficult for users due to the morphological mis-
match between current robotic hands and the lack of tactile
feedback for the teleoperator.

Given the challenges of large-scale data collection, most
offline dexterous policies tend to fail due to overfitting.
To mitigate this, some previous works have focused on
learning policies with limited data [25, 26], either by using
nearest-neighbor matching for action retrieval [25, 10, 22]
or by initializing with a single demonstration and learning a
residual policy with online interactions to improve general-
ization [26, 27].

b) Learning from Human Videos: With the goal of
scaling up data collection using more accessible sources,
the vision and robotics communities have worked on learn-
ing meaningful behaviors and patterns from human videos
[28, 29, 30, 31]. Some efforts focus on learning simulators
that closely mimic the real-world environment of the robot
from human videos using generative models [29, 32, 28],
using these simulators to train policies and make decisions
by predicting potential future outcomes.

Other works use internet-scale human videos to learn
higher-level skills or affordances [30, 33]. However, these
works either require low-level policies to learn action prim-
itives for interacting with objects [30], or only focus on
simple tasks where a single point of contact is sufficient for
manipulation [33]. Yet other approaches leverage on-scene
human videos to learn multi-stage planning [15, 13], but need
additional robot data to learn lower-level object interactions.
Notably, all of these works focused on two-gripper robots,
where manipulation capabilities are limited and objects are
less articulated.

A recent study, DexCap [16], addresses this issue for
dexterous hands by using multiple cameras and a hand
motion capture system to collect human demonstrations. An
offline policy is learned by masking the human hand from
the environment point cloud followed by an online fine-
tuning stage with human feedback. HUDOR differs from
this work by eliminating the need for cumbersome human
feedback by automatically extracting a reward from a single
human demonstration and allowing the robot to learn from
its mistakes to compensate for the morphology mismatch
between the robot and the human.

III. LEARNING TELEOPERATION-FREE ONLINE
DEXTERIOUS POLICIES

HUDOR introduces a framework to learn dexterous poli-
cies from a single in-scene human video of task execution.
Our method involves three steps: (1) A human video and
corresponding hand pose trajectory are recorded; (2) hand
poses are transferred and executed on the robot using pose
transformation and full-robot inverse kinematics (IK); and (3)
inverse reinforcement learning (IRL) is used to successfully
imitate the expert trajectory. In this section, we explain each
component in detail.

A. Robot Setup and Human Data Collection
Our hardware setup includes a Kinova JACO 6-DOF

robotic arm with a 16-DOF four-fingered Allegro hand [9]

https://object-rewards.github.io/
https://object-rewards.github.io/


HOW

at
o

at
a

HRW

at
a

W

W

Fig. 2: Illustration of the robot setup and trajectory transfer in
HUDOR. Aruco markers are used for calibration. Here, the VR
headset is used solely for obtaining hand pose estimates and can
be worn or attached to the setup as needed. World frame W is
visualized on the ArUco marker on the operation table.

attached. Two RealSense RGBD cameras [34] are positioned
around the operation table for calibration and visual data col-
lection. A Meta Quest 3 VR headset is used to collect hand
pose estimates. Our first step involves computing the relative
transformation between the Quest frame and the robot frame
to directly transfer the recorded hand pose trajectory from the
human video to the robot as shown in Figure 2. We use two
ArUco markers – one on the operation table and another on
top of the Allegro hand – to compute relative transformations
between camera frames. The first marker is used to define a
world frame and transform fingertip positions from the Quest
frame to the world frame, while the second marker is used to
determine the transformation between the robot’s base and
the world frame.

a) Relative Transformations: We collect human hand
pose estimates using existing hand pose detectors on Quest 3,
and capture visual data using the RGBD cameras. Fingertip
pose for the ith human fingertip captured in the headset
frame at time t, at,io , are first transformed to the world frame
as at,iw = HOW × at,io , where HOW is the homogeneous
transform from the headset frame to the world frame. This
transform is computed by detecting the ArUco marker on
the table using the cameras on the VR headset. A standard
calibration procedure [35] is used to compute the transfor-
mation HRW between the robot frame and the world frame
by detecting the two ArUco markers using the RGB camera
shown in Figure 2. This calibration allows us to directly
transfer human fingertip positions from the Oculus headset
to the robot’s base using the equation:

at,ir = H−1
RW × at,iw (1)

= H−1
RW ×HOW × at,io (2)

where, at,ir are the homogeneous coordinates of the ith

human fingertip positions from the recorded video in the
robot frame. Henceforth, we use atr = [at,0r , at,1r , at,2r at,3r ] to
refer to the 12-dimensional vector containing concatenated
locations of the four fingertips in robot frame.

b) Data aglinment: During data collection, we record
the fingertip positions atr and image data ot for all t = 1 . . . T
where T is the trajectory length. Since these components are
collected at different frequencies, we align them on collected
timestamps to produce synchronized tuples (atr, o

t) for each
time t. The data is then subsampled to 5 Hz.

c) Inverse Kinematics: To ensure the robot’s fingertips
follow the desired positions relative to its base, we imple-
mented a custom inverse kinematics (IK) module for the full
robot arm-hand system. This module uses gradient descent
on the joint positions, using the Jacobians of the robot with
respect to the desired fingertip pose changes [36]. We apply
different learning rates for the hand and arm joints, allowing
the IK to prioritize the hand movements. The hand learning
rate is set to be 50 times higher than the arm learning rate,
enabling more natural and precise control of the fingers. The
IK module takes the desired fingertip positions atr and the
current joint positions of both hand and arm jt as inputs, and
outputs the next joint positions j∗t+1 = I(atr, j

t) needed to
reach the target.

Using the calibration and IK procedures outlined above,
our robot arm-hand system can follow a fingertip trajectory
directly from an in-scene human video.

B. Residual Policy Learning

Due to the morphological differences between the human
and robot, as well as errors in VR hand pose estimation,
naively replaying the retargeted fingertip trajectories on the
robot mostly does not successfully solve the task, even
when the object is in the same location. To alleviate this
problem, we learn an online residual policy using inverse
reinforcement learning (IRL) to augment the trajectory re-
play. Traditional IRL algorithms rely on reward functions
derived from straightforward methods such as image-based
matching rewards [27, 26] using in-domain demonstration
data. However, due to the significant difference in visual
appearance of human and robot hands, these methods do
not provide effective reward signals. To get around this
domain gap, we propose a novel algorithm for object-centric
trajectory-matching rewards.

a) Object Point Tracking and Trajectory Matching: Our
reward computation involves using off-the-shelf computer
vision models to track the motion of points on the object
of interest. We compute the mean squared error between
motion of these points in the human expert video and the
robot policy rollout and use this as a reward at every timestep
in our online learning framework. In this section, we explain
our reward calculation in detail.

• Object State Extraction: Given a trajectory τ =
[o1, . . . , oT ], where T is the length of the trajectory
and ot is an RGB image at time t, we use the first
frame o1 as input to a language-grounded Segment-
Anything Model [37, 38] – langSAM. langSAM uses
a text prompt and GroundingDINO [39] to extract
bounding boxes for the object, which are then input
to the SAM [38] to generate a mask. The output of
langSAM corresponding to o1 is a segmentation mask



B
re

ad
 P

ic
ki

ng

8/10

Pa
pe

r S
lid

in
g

17cm

M
us

ic
 B

ox
 

O
pe

ni
ng

6/10

C
ar

d 
Sl

id
in

g

7/10

Fig. 3: Rollouts of trained policies from HUDOR on four tasks are shown. For all tasks, validation is performed at various locations
within the illustrated areas in the leftmost frames, while training is conducted using a single human video where the initial object
configuration is in the middle of these areas. Success for each task is shown in the rightmost frames. Videos are best viewed on our
website: https://object-rewards.github.io/.

for the initial object position, P 1 ∈ RN×2, which is
represented as a set of N points on the object, where
N is a hyperparameter. The parameter N determines
the density of object tracking and is adjusted based on
the object’s size in the camera view.

• Point Tracking: The mask P 1 is used to initialize the
transformer-based point tracking algorithm Co-Tracker
[40]. Given a trajectory of RGB images, τ , and the first-
frame segmentation mask, P 1, Co-Tracker tracks points
pti = (xt

i, y
t
i) in the image throughout the trajectory

τ for all t ∈ {1 . . . T}, where P 1 = [p11, . . . p
1
N ]. We

use τp = [P 1, . . . PT ] to denote the point trajectory
consisting of the sets of tracked points.

• Matching the Trajectories: First, we define two addi-
tional quantities: mean translation at time t, δttrans, and
mean rotation at time t, δtrot. δ

t
trans is defined as the

mean displacement of all the points in P t from P 1.
Similarly, δtrot is defined as the mean rotation vector
about the centroid of all the points in P t from P 1.
Concretely,

δttrans = E
i
(pti − p1i ) (3)

δtrot = E
i

[(
pti − E

i
(pti)

)
×
(
p1i − E

i
(p1i )

)]
(4)

We define the object motion at time t as T t =
[δttrans, δ

t
rot]. Given two separate point trajectories, one

corresponding to the robot τpR and one corresponding
to the human τpH , the reward at time t is calculated
by computing the root mean squared error between the
object motions of the robot and human at time t:

rH2R
t = −

√(
|T t

R − T t
H |2

)
(5)

b) Exploration Strategy: We select a subset of action
dimensions to explore and learn from. This speeds up the

learning process and enables quick adaptation. For explo-
ration, we use a scheduled additive Ornstein-Uhlenbeck (OU)
noise [41, 42] to ensure smooth robot actions.

After extracting a meaningful reward function and identi-
fying a relevant subset of the action space, we learn a residual
policy πr(·) on this subset by maximizing the following
reward function for each episode i using DrQv2 [43]:

RH2R
i =

∑
t

rH2R
t (6)

Inputs to the residual policy at+ = πr(a
t
r,∆st,E(P t

R), T t
R)

at time t are: (a) the human retargeted fingertip positions with
respect to the robot’s base atr, (b) change in current robot
fingertip positions ∆st = st − st−1, (c) the centroid of the
tracked points set E(P t

R) and (d) the object motion at time
t, T t

R. Finally, we compute the executed actions as follows:

at = atr + at+ (7)
= atr + πr(a

t
r,∆st,E(P t

R), T t
R) (8)

The action, at, is sent to the IK module which converts it
into joint commands for the robot. The policy is improved
over time using DrQv2 as the robot accumulates experience
interacting with the object.

IV. EXPERIMENTAL EVALUATION

We evaluate our method against 6 different baselines and
run multiple ablations to answer the following questions:

1) How much do online corrections improve the perfor-
mance of HUDOR?

2) Does HUDOR improve over common reward func-
tions?

3) How well does HUDOR generalize to new objects?

https://object-rewards.github.io/


A. Task Descriptions

We experiment with four dexterous tasks, which are vi-
sualized in Figure 3. Exploration axes mentioned are with
respect to the base of the robot.

a) Bread Picking: The robot must locate an orange-
colored piece of bread, pick it up, and hold it steadily for
a sustained period. During validation, the bread moves and
rotates within a 15cm × 10cm space. We explore on X axes
of all fingers for this task. Text prompt used to retrieve the
mask is orange bread.

b) Card Sliding: The robot must locate and slide a thin
card with its thumb and pick it up by supporting it with the
rest of its fingers. During validation, the card rotates and
moves within a 10cm × 10cm space during validation. Text
prompt used to retrieve the object mask is orange card. We
explore on only X and Y axes of the thumb.

c) Music Box Opening: The robot must locate and
open a small music box. It uses its thumb to stabilize the
box while unlatching the top with its index finger. During
validation, the box moves and rotates within a 10cm × 10cm
space. We explore on all axes of thumb and index fingers.
Text prompt used to retrieve the mask is green music box.
For this task specifically we use sparse rewards and use only
the last 5 frames of the trajectory for reward calculation for
HUDOR and all of our baselines.

d) Paper Sliding: The robot must slide a given piece
of paper to the right. During validation, the paper rotates and
moves within a 15cm × 15cm space. Text prompt used to
retrieve the mask is blue paper with pizza patterns. Higher
rewards are given as the paper moves further to the right.
Success in this task is measured by the distance the paper
moves to the right, expressed in centimeters. We explore on
X and Z axes of all the fingers.

Evaluating robot performance: To compare the robot’s
performance, we evaluate HUDOR against various online
and offline algorithms. For all online algorithms, we train the
policies until the reward converges, up to one hour of online
interactions. We evaluate the methods by running rollouts on
10 varying initial object configurations for every task.

B. How important are online corrections?

Figure 4 demonstrates how online learning improves the
policy in the Paper Sliding task. As can be seen, HUDOR en-
ables the robot policy trajectory to move progressively closer
to that of the human expert. To showcase the importance
of online corrections, we implement and run the state-of-
the-art transformer-based behavior cloning (BC) algorithm
VQ-Bet [3], as the base architecture for all of our offline
baselines. We ablate the input and the amount of demonstra-
tions used to experiment on different aspects, and compare
HUDOR against the following offline baselines:

1) BC - 1 Demo [3]: HUDOR enables training robust
policies with only a single human demonstration. For
fairness, we compare its offline counterpart and train
VQ-Bet end-to-end using only a single demonstration
per task. The centroid of the tracked points set, the

Human 
Trajectory

Robot Traj. 
(Episode 42)

Robot Traj. 
(Episode 1)

R
ew

ar
d
s

Episode TimestepsEpisode Timesteps
X

 A
x

es
 o

f 
O

b
je

ct
 

T
ra

je
ct

o
ri

es

Trajectory Visualizations

Fig. 4: Illustration of how online correction improves robot policy
and moves the robot trajectory closer to the expert’s as time
progresses in the Paper Sliding task. At the top, we visualize the
trajectories of the paper in different episodes and in the human
video. At the bottom, we showcase the X-axis of the trajectory of
the tracked points for different episodes and their corresponding
rewards. The color of the episodes gradually changes from red in
Episode 1 to green in Episode 42.

rotation and translation of the object, and the robot’s
fingertip positions are given as input to the model.

2) BC [3]: We run VQ-Bet similar to the previous base-
line, but we use 30 demonstrations for each task.

3) Point Cloud BC: Similar to DexCap [16], we include
point cloud in our input space and modify the input
of the BC algorithm by concatenating the point cloud
representations received from PointNet [44] encoder.
We uniformly sample 5000 points from the point
cloud and pass them to PointNet without any further
preprocessing. Gradients are backpropagated through
the entire system, including the point cloud encoder.

TABLE I: Comparison of HUDOR to different offline algorithms.
Paper sliding success is measured in cm of rightward motion; other
tasks show success rates out of 10 robot rollouts.

Method Bread Card Music Paper
(./10) (./10) (./10) (cm)

BC - 1 Demo [3] 0 0 0 3.5 ± 1.1
BC [3] 3 0 0 4.1 ± 1.3

Point Cloud BC [16] 3 0 0 12 ± 1.3
HUDOR (ours) 8 7 6 17.3 ± 1.5

Table I shows the comparison results. As expected, the
BC-1 Demo baseline quickly overfits and fails across all
tasks. The BC baseline performs relatively well on the Bread
Picking task, where precision is less critical. However, on



tasks like Card Sliding and Music Box Opening, which
require more dexterity, it also overfits quickly—reaching the
objects but failing to maintain the necessary consistency.
Both BC baselines manage to reach the paper but do little
beyond that for Paper Sliding. Our strongest baseline, Point
Cloud BC, performs relatively well on Paper Sliding and
Bread Picking. We observed that with this baseline, when
the robot hand occupies too much of the scene, the data
goes out of distribution, causing the model to fail. It moves
the paper to the middle but doesn’t move it further, grasps
the bread but fails to lift it, and reaches for the lid of the
music box but struggles to stabilize it with the thumb. More
of the failure cases can be seen on our website.

These results indicate that the dexterous skills learned
using this human data collected with HUDOR can scale
better with more data for some tasks. However, for highly
precise tasks such as Music Box Opening and Card Sliding,
all offline methods fail, highlighting the importance of online
corrections for tasks requiring high dexterity.

C. Does HUDOR improve over other reward functions?

In HUDOR in order to compensate for the visual differ-
ences between the human and robot videos, we use object-
oriented point tracking based reward functions to guide the
online learning. We ablate over our design decision, and
train online policies for three of our tasks with the following
reward functions:

1) Image OT [27]: We pass RGB images from both the
robot and the human videos through pretrained Resnet-
18 [45] image encoders to get image representations
and apply optimal transport (OT) based matching on
them to get the reward, similar to FISH [27].

2) Pred OT: Instead of direct images we apply OT
matching on the points that are tracked throughout both
the trajectories of tracked sets of points τpr and τph .

TABLE II: Comparison of success of HUDOR to different reward
extraction algorithms. Success is shown as similar to Table I

Method HUDOR(ours) Image OT [27] Pred OT

Bread Picking 8 6 6
Music Box Opening 6 1 2
Paper Sliding (cm) 17.25 ± 1.47 16.1 ± 1.37 16.5 ± 1.23

We present the success rates in Table II. We observe that
in tasks where the object occupies a large area in the image
and the visual differences between the hand and the robot
do not significantly affect the image, the Image OT baseline
performs similarly to HUDOR, as seen in the Paper Sliding
task. However, in tasks where the camera needs to be closer
to the object to detect its trajectory—such as Music Box
Opening—the visual differences between the hand and the
robot significantly hinder training, causing image-based re-
ward calculations to fail. On the other hand, direct matching
on the predicted points fails because the points tracked for
two separate trajectories do not correspond to each other;
the same indexed point in one trajectory may correspond
to a different location on the object in another trajectory.

5/10 5/10 4/10 0/10

Dobby Brown Music Box Medicine Bottle Red Peg

5/10 4/10 2/10 2/10

Green Gum Package Small Plate Brown Tissue Yellow Tea Bag

B
re

ad
 P

ic
ki

ng
C

ar
d 

Sl
id

in
g

Fig. 5: Generalization experiments on Bread Picking and Card
Sliding task. We input the text prompts on top and bottom as input
to the language grounded SAM model to get the initial mask for
each object.

These differences cause matching to give inconsistent reward
emphasizing the importance of matching trajectories rather
than points or images.

D. How well does HUDOR generalize to new objects?

We test the generalization capabilities of policies trained
with HUDOR on new objects for two of our tasks, with the
results shown in Figure 5. In these experiments, we directly
run the policies on new objects without retraining, using
different text prompts for each inference to obtain object
segmentation. We observe that HUDOR can generalize with
varying degrees of success to new objects when their shape
and texture are not significantly different from the original
object. While the weight and thickness of the card affect
success in Card Sliding, texture is the most critical factor
causing failure in Bread Picking. Despite the Dobby sculp-
ture having a very different shape from the bread, HUDOR
performs well; however, when the object is slippery, like the
Red Peg, we observe complete failure. Most failures in Card
Sliding occur when objects are so light that after sliding,
they don’t fall onto the supporting fingers, preventing a tight
grip. These experiments show how point-tracking can enable
some policy generalization.

V. LIMITATIONS AND DISCUSSION

In this paper, we introduced HUDOR, a point-tracking,
object-oriented reward mechanism designed to close the
gap in human-to-robot policy transfer for dexterous hands.
HUDOR improves upon both offline methods and online
counterparts with different reward functions. We also demon-
strate HUDOR’s generalization to entirely new objects.

Despite its strengths, we identify three limitations. First,
our framework only works with in-scene human videos.
We believe integrating in-the-wild data collection would
significantly enhance its generalization potential. Second, the
exploration mechanism requires prior knowledge of which
subset of action dimensions is suitable for exploration. Fi-
nally, there is no retry mechanism during an episode; when
the robot makes a mistake, it can only retry in the next
episode. This makes training for long-term tasks challeng-
ing. Incorporating a multi-stage learning framework could
address this issue. These represent interesting opportunities
for future improvements to HUDOR.

https://object-rewards.github.io


REFERENCES

[1] V. Kumar, E. Todorov, and S. Levine, “Optimal control with
learned local models: Application to dexterous manipulation,”
2016 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 378–383, 2016.

[2] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-
Grained Bimanual Manipulation with Low-Cost Hardware,”
arXiv e-prints arXiv:2304.13705, Apr. 2023.

[3] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. Mahi
Shafiullah, and L. Pinto, “Behavior Generation with Latent
Actions,” arXiv e-prints arXiv:2403.03181, Mar. 2024.

[4] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel,
R. Tedrake, and S. Song, “Diffusion policy: Visuomotor policy
learning via action diffusion,” The International Journal of
Robotics Research, 2024.

[5] Z. J. Cui, Y. Wang, N. Muhammad, L. Pinto, et al., “From play
to policy: Conditional behavior generation from uncurated
robot data,” arXiv preprint arXiv:2210.10047, 2022.

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen,
K. Choromanski, T. Ding, D. Driess, A. Dubey, C. Finn, et al.,
“RT-2: Vision-Language-Action Models Transfer Web Knowl-
edge to Robotic Control,” arXiv e-prints arXiv:2307.15818, p.
arXiv:2307.15818, July 2023.

[7] Open X-Embodiment Collaboration, A. O’Neill, A. Rehman,
A. Gupta, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, et al.,
“Open X-Embodiment: Robotic Learning Datasets and RT-X
Models,” arXiv e-prints arXiv:2310.08864, Oct. 2023.

[8] H. Etukuru, N. Naka, Z. Hu, S. Lee, J. Mehu, A. Edsinger,
C. Paxton, S. Chintala, L. Pinto, and N. M. Mahi Shafi-
ullah, “Robot Utility Models: General Policies for Zero-
Shot Deployment in New Environments,” arXiv e-prints
arXiv:2409.05865, Sept. 2024.

[9] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto, “Holo-
dex: Teaching dexterity with immersive mixed reality,” 2022.

[10] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and
L. Pinto, “OPEN TEACH: A Versatile Teleoperation System
for Robotic Manipulation,” arXiv e-prints arXiv:2403.07870,
Mar. 2024.

[11] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi,
and X. Wang, “Bunny-VisionPro: Real-Time Bimanual Dex-
terous Teleoperation for Imitation Learning,” arXiv e-prints
arXiv:2407.03162, July 2024.

[12] S. Kumar, J. Zamora, N. Hansen, R. Jangir, and X. Wang,
“Graph Inverse Reinforcement Learning from Diverse
Videos,” arXiv e-prints arXiv:2207.14299, July 2022.

[13] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine,
“AVID: Learning Multi-Stage Tasks via Pixel-Level Trans-
lation of Human Videos,” arXiv e-prints arXiv:1912.04443,
Dec. 2019.

[14] C. Eze and C. Crick, “Learning by Watching: A Review of
Video-based Learning Approaches for Robot Manipulation,”
arXiv e-prints arXiv:2402.07127, Feb. 2024.

[15] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu,
Y. Zhu, and A. Anandkumar, “MimicPlay: Long-Horizon
Imitation Learning by Watching Human Play,” arXiv e-prints
arXiv:2302.12422, Feb. 2023.

[16] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and
C. K. Liu, “DexCap: Scalable and Portable Mocap Data
Collection System for Dexterous Manipulation,” arXiv e-
prints arXiv:2403.07788, Mar. 2024.

[17] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko,
R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich,
B. Sundaralingam, Y. Narang, J.-F. Lafleche, D. Fox, and
G. State, “DeXtreme: Transfer of Agile In-hand Manipulation
from Simulation to Reality,” arXiv e-prints arXiv:2210.13702,
Oct. 2022.

[18] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,

B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell,
R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solv-
ing Rubik’s Cube with a Robot Hand,” arXiv e-prints
arXiv:1910.07113, Oct. 2019.

[19] K. Shaw, A. Agarwal, and D. Pathak, “LEAP Hand: Low-
Cost, Efficient, and Anthropomorphic Hand for Robot Learn-
ing,” arXiv e-prints arXiv:2309.06440, Sept. 2023.

[20] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating
without Seeing: Towards In-hand Dexterity through Touch,”
arXiv e-prints arXiv:2303.10880, Mar. 2023.

[21] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani,
D. Jayaraman, Y. Zhu, L. Fan, and A. Anandkumar, “Eureka:
Human-Level Reward Design via Coding Large Language
Models,” arXiv e-prints arXiv:2310.12931, Oct. 2023.

[22] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto, “Holo-
dex: Teaching dexterity with immersive mixed reality,” arXiv
preprint arXiv:2210.06463, 2022.

[23] S. Yang, M. Liu, Y. Qin, R. Ding, J. Li, X. Cheng,
R. Yang, S. Yi, and X. Wang, “ACE: A Cross-Platform Visual-
Exoskeletons System for Low-Cost Dexterous Teleoperation,”
arXiv e-prints arXiv:2408.11805, Aug. 2024.

[24] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao,
Q. Wan, S. Birchfield, N. Ratliff, and D. Fox, “Dexpilot:
Vision-based teleoperation of dexterous robotic hand-arm sys-
tem,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 9164–9170.

[25] I. Guzey, B. Evans, S. Chintala, and L. Pinto, “Dexterity from
touch: Self-supervised pre-training of tactile representations
with robotic play,” 2023.

[26] I. Guzey, Y. Dai, B. Evans, S. Chintala, and L. Pinto, “See to
Touch: Learning Tactile Dexterity through Visual Incentives,”
arXiv e-prints arXiv:2309.12300, Sept. 2023.

[27] S. Haldar, J. Pari, A. Rai, and L. Pinto, “Teach a Robot to
FISH: Versatile Imitation from One Minute of Demonstra-
tions,” arXiv e-prints arXiv:2303.01497, Mar. 2023.

[28] J. Liang, R. Liu, E. Ozguroglu, S. Sudhakar, A. Dave, P. Tok-
makov, S. Song, and C. Vondrick, “Dreamitate: Real-World
Visuomotor Policy Learning via Video Generation,” arXiv e-
prints arXiv:2406.16862, June 2024.

[29] M. Yang, Y. Du, K. Ghasemipour, J. Tompson, D. Schuur-
mans, and P. Abbeel, “Learning interactive real-world simu-
lators,” arXiv preprint arXiv:2310.06114, 2023.

[30] K. Pertsch, R. Desai, V. Kumar, F. Meier, J. J. Lim, D. Ba-
tra, and A. Rai, “Cross-Domain Transfer via Semantic Skill
Imitation,” arXiv e-prints arXiv:2212.07407, Dec. 2022.

[31] K. Grauman, A. Westbury, L. Torresani, K. Kitani, J. Malik,
T. Afouras, K. Ashutosh, V. Baiyya, et al., “Ego-Exo4D:
Understanding Skilled Human Activity from First- and Third-
Person Perspectives,” arXiv e-prints arXiv:2311.18259, Nov.
2023.

[32] J. Urain, A. Mandlekar, Y. Du, M. Shafiullah, D. Xu,
K. Fragkiadaki, G. Chalvatzaki, and J. Peters, “Deep Gener-
ative Models in Robotics: A Survey on Learning from Multi-
modal Demonstrations,” arXiv e-prints, p. arXiv:2408.04380,
Aug. 2024.

[33] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak, “Af-
fordances from Human Videos as a Versatile Representation
for Robotics,” arXiv e-prints arXiv:2304.08488, Apr. 2023.

[34] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and
A. Bhowmik, “Intel RealSense Stereoscopic Depth Cameras,”
arXiv e-prints arXiv:1705.05548, May 2017.

[35] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision. Academic Press, 2002.

[36] T. Yenamandra, F. Bernard, J. Wang, F. Mueller, and
C. Theobalt, “Convex Optimisation for Inverse Kinematics,”
arXiv e-prints arXiv:1910.11016, Oct. 2019.

[37] L. Medeiros et al., “Lang-segment-anything,” https://github.

https://github.com/luca-medeiros/lang-segment-anything


com/luca-medeiros/lang-segment-anything, 2023, accessed:
2024-09-15.

[38] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo,
P. Dollár, and R. Girshick, “Segment Anything,” arXiv e-prints
arXiv:2304.02643, Apr. 2023.

[39] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal,
P. Bojanowski, and A. Joulin, “Emerging Properties
in Self-Supervised Vision Transformers,” arXiv e-prints
arXiv:2104.14294, Apr. 2021.

[40] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi,
and C. Rupprecht, “Cotracker: It is better to track together,”
arXiv preprint arXiv:2307.07635, 2023.

[41] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the
brownian motion,” Phys. Rev., vol. 36, pp. 823–841, Sep
1930. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRev.36.823

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with
deep reinforcement learning,” arXiv preprint, 2015.

[43] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering
visual continuous control: Improved data-augmented rein-
forcement learning,” arXiv preprint arXiv:2107.09645, 2021.

[44] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 652–660.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

https://github.com/luca-medeiros/lang-segment-anything
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823

	Introduction
	Related Works
	Learning Teleoperation-Free Online Dexterious Policies 
	Robot Setup and Human Data Collection
	Residual Policy Learning

	Experimental Evaluation
	Task Descriptions
	How important are online corrections?
	Does HuDOR improve over other reward functions?
	How well does HuDOR generalize to new objects?

	Limitations and Discussion

