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Abstract— Equipping multi-fingered robots with tactile sens-
ing is crucial for achieving the precise, contact-rich, and
dexterous manipulation that humans excel at. However, relying
solely on tactile sensing fails to provide adequate cues for
reasoning about objects’ spatial configurations, limiting the
ability to correct errors and adapt to changing situations.
In this paper, we present Tactile Adaptation from Visual
Incentives (TAVI), a new framework that enhances tactile-based
dexterity by optimizing dexterous policies using vision-based
rewards. First, we use a contrastive-based objective to learn
visual representations. Next, we construct a reward function
using these visual representations through optimal-transport
based matching on one human demonstration. Finally, we
use online reinforcement learning on our robot to optimize
tactile-based policies that maximize the visual reward. On six
challenging tasks, such as peg pick-and-place, unstacking bowls,
and flipping slender objects, TAVI achieves a success rate of
73% using our four-fingered Allegro robot hand. The increase
in performance is 108% higher than policies using tactile and
vision-based rewards and 135% higher than policies without
tactile observational input. Robot videos are best viewed on our
project website: https://see-to-touch.github.io/.

I. INTRODUCTION

Dexterity has played a crucial role in human development,
enabling us to create and utilize tools effectively [1]. Al-
though two-fingered grippers have been extensively studied
in the field of robotics [2, 3, 4], they inherently lack the
physical capabilities required for performing dexterous tasks
that necessitate fine-grained manipulation at the fingertips.
These additional capabilities facilitate a wider range of tasks
in real-world scenarios; however, they also result in a higher
dimensional actions. Furthermore, due to visual occlusion
during such manipulation processes, effective utilization of
tactile data becomes vital – an aspect that remains under-
studied in the context of dexterity.

To train dexterous policies, several frameworks have been
proposed, ranging from model-based control, in which mod-
els of the robot and object are used to optimize control
behavior [5, 6], to simulation-to-reality transfer (sim2real),
where a policy is trained in a simulator and then transferred
to the real world [7, 8]. While the latter methods demonstrate
impressive results, they require the ability to simulate sensory
observations during manipulation. This becomes problematic
when using rich tactile sensing, as modeling uncalibrated
skin sensing is an open research problem in itself [9].
Consequently, much of the prior work in multi-fingered
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Fig. 1: TAVI learns dexterous policies through online learning. Both
tactile and image is used to retrieve action while only image is used
for reward calculation.

dexterity relies either exclusively on visual feedback or on
weaker binary-touch signals [10].

To address the challenges associated with modeling dexter-
ous behavior, recent approaches have focused on imitation-
based methods. In these approaches, humans first teleoperate
robots to collect demonstrations of dexterous behavior [11,
12, 13]. Then, offline imitation learning is used to obtain
policies that fit these demonstrations. Dexterous policies
trained using this approach can solve a wide range of tasks,
from reorienting objects to precise picking. Importantly,
since policies are trained on real observational data, they
readily scale to skin-based tactile data, which is otherwise
difficult to model. However, offline imitation is not a silver
bullet. First, it requires the collection of significant amounts
of difficult-to-collect demonstration data. Second, it needs
the demonstrations to densely cover object configurations
used in evaluation. Third, it does not have any mechanism
to recover from errors during execution.

In this work, we present Tactile Adaptation from Visual
Incentives (TAVI), a new framework for tactile-based dex-
terity that requires only one successful demonstration, can
generalize to new object configurations, and can learn to
correct behaviors from failures. The key insight in TAVI is
to continuously adapt the dexterous policy by improving the
Optimal-Transport (OT) match between sensory observations
generated by the policy and those generated through human
demonstrations. The adaptation algorithm is built on prior
work in inverse reinforcement learning (IRL) [14], where
the matching score corresponds to rewards and policy opti-
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mization is done through RL.
However, unlike prior work in IRL, where observations

can directly provide crisp signals of task completion, the
use of tactile observations poses a unique challenge. Tactile
signals often lack the necessary cues to reason about the
spatial location of objects. For instance, the tactile signal
obtained from picking up a slender object is very similar
to that of pinch grasping. To address this, we only use
visual cues to determine reward, which in turn provides a
strong incentive for tactile-based policy learning. Moreover,
to improve the quality of visual rewards, we use a novel con-
trastive learning objective that augments a time-contrastive
loss with proprioceptive movements.

We experimentally evaluate TAVI on six contact-rich,
dexterous tasks such as opening a mint box, unstacking
bowls, and flipping slender objects. Through an extensive
study, we present the following key insights:

1) TAVI improves upon prior state-of-the-art work in
dexterous imitation [13] with an average of 5.5×
improvement in success rate given 30 minutes of
online interactions. This represents the first framework
to learn dexterous policies from online tactile-based
interactions (Section V-C).

2) Visual representations learned through our contrastive
learning scheme achieve approximately 56% improve-
ment in four of our tasks over prior representation
methods on dexterous manipulation trajectories (Sec-
tion V-D).

3) Ablations on different representation modules and sen-
sor combinations show that the design decisions in
TAVI are crucial for high performance (Sections V-
C, V-D).

Robot videos generated by TAVI are best viewed on our
website: https://see-to-touch.github.io/.

II. RELATED WORKS

a) Dexterous manipulation and tactile sensing: Control
of dexterous, multi-fingered robots has been of longstanding
interest to the field [15, 16, 17]. A recent approach is to learn
a policy in simulation and transfer to the real world, which
requires extensive randomization and does not simulate fine-
grained touch sensors [7, 8, 10, 18]. Earlier work focuses
on physics-based models of grasping [19, 20] to compute
grasp stability from motor torque readings. Unfortunately,
these methods are susceptible to noise due to the inherent
interconnection between motor sensors and controllers. To
mitigate this coupling, a number of tactile sensors have been
created to endow robots with touch [21, 22, 23]. One such
sensor, GelSight, has been used extensively for tasks like
object classifcation [24], measuring surface properties [25],
in-hand rotation [18] and pose estimation [26]. Due to
GelSight’s difficulty to cover an entire multifingered hand,
‘skin’-like sensors [27] have been developed. These sensors
can cover the entire hand, giving high-resolution tactile
information that can aid learning dexterous policies.

b) Learning from tactile data: To leverage high-
resolution readings from tactile sensors, a number of
learning-based approaches have been used to solve tasks
with two-fingered robot grippers [3, 28, 29, 30, 31]. These
methods require a large amount of task-oriented data and
are not applied to multi-fingered hands. Most similar to our
work, T-DEX [13] learns a tactile representation for an entire
hand by using self-supervision on a large, task-agnostic play
dataset. TAVI uses the pretrained tactile encoder from T-
DEX for our tasks.

c) Representation learning for visual observations:
Learning meaningful, low-dimensional representations with
limited or no data labels is an active area of interest in
computer vision [32, 33, 34, 35]. These techniques aim to
optimize an auxiliary objective that results in representations
that are good for downstream tasks. Some tasks include
maintaining consistency between augmentations of the same
image [34], reconstruction of patches [36], and making sure
similar examples are close to one another [37]. This has
been successfully applied on computer vision benchmarks
due to the availability of large amounts of unlabeled data [38,
39, 40]. Because of the limited availability of labeled data
in robotics, unsupervised and semi-supervised representation
learning techniques have grown in popularity for tasks like
manipulation [41] and visual imitation [42, 43]. For our
experiments, we use an InfoNCE-style [37] loss using time-
contrastive [44] pairs to learn visual representations.

d) Online adaptation and imitation learning: Imitation
learning (IL) is has been effective for solving real-world
tasks [45, 46]. The simplest form, Behavior Cloning (BC)
learns policies from offline expert demonstrations and it
has been effective especially with large datasets [47, 48].
However, BC struggles with out-of-domain scenarios [49].
Inverse reinforcement learning (IRL) estimates expert reward
functions, enhancing policy performance but at the cost of
sample efficiency [50]. Many works have sought to improve
the efficiency of IRL [50, 51, 52] and to extend it to the
visual imitation setting [53, 54, 55, 56]. Our work leverages
optimal transport IRL for efficient policy learning from
visual inputs [14].

III. BACKGROUND

TAVI builds on several technical ideas in constrastive
learning and optimal-transport imitation:

A. Constrastive Self-Supervised Learning

Self-supervised learning (SSL) seeks to learn compact
representations for high-dimensional observations, such as
images, to be used in downstream tasks. Contrastive methods
for SSL seek to move representations between “positive”
samples close together while moving “negative” samples
further from one another.

InfoNCE [37] is a commonly used loss function employed
in contrastive learning that distinguishes positive and nega-
tive pairs based on their density ratio. For an observation and
its positive pair ot, o+t and set of n negative observations D =
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{o1, . . . , on}, resulting in latents zt, z
+
t and {z1, . . . zn}, the

loss is defined as:

LNCE(zt, z
+
t , {z1, . . . zn}) = −ED

[
log

h(zt, z
+
t )∑n

i=1 h(zt, zi)

]
(1)

where h(x, y) = exp(x · y). Maximizing this loss causes
the model to assign higher probabilities to positive pairs
while pushing apart negative, resulting in discriminative
representations.

B. Optimal-Transport Imitation Learning

Imitation learning seeks to find a policy from expert
demonstrations. Recent methods [53, 57] have used optimal-
transport to efficiently imitate expert trajectories from im-
ages. One of these methods, FISH [14], takes a weak base
policy and an encoder that maps from high dimensional
observations to a low dimensional latent space, and learns
a residual policy that corrects the base policy by producing
corrective offsets. It does this by using an optimal-transport-
based reward function between an expert trajectory and
the robots executed trajectory. Formally, given an expert
trajectory T e = {oe1, . . . , oeT } and an observed robot tra-
jectory T r = {or1, . . . , orT }, latent representations for each
{ze1, . . . , zeT }, {zr1 , . . . , zrT } are computed using the given
encoder. A pairwise cost matrix between the two representa-
tions, C, can then be formed where Cij corresponds to the
cost of moving zei to zrj . Optimal-transport finds the transport
plan µ∗ that best matches T e and T r, where µ∗

ij is the score
of the match between the ith representation from the expert
and jth representation from the robot. The optimal-transport
reward is computed as

rOT(ort ) = −
T∑

t′=1

Ct,t′µ
∗
t,t′ (2)

This allows for comparing behaviors in a time-invariant
manner. If T r exactly matched T e, the cost would be
zero everywhere and the reward would be maximized. If
our robot trajectory was offset, say by repeating the first
observation T r = {oe1, oe1, . . . oeT−1}, we would only be
lightly penalized because the optimal-transport would find
good matches between adjacent observations. DDPG [58] is
used to maximize this reward function, resulting in similar
behavior to the expert.

IV. TACTILE ADAPTATION THROUGH VISUAL
INCENTIVES (TAVI)

First, we collect data on a robot hand equipped with skin-
based tactile sensors. Expert demonstrations are collected
using the HOLO-DEX framework (Section IV-A). Next, we
must obtain visual representations for OT reward calculation.
This is done in a self-supervised manner with a modified
InfoNCE loss (Section IV-B). Finally, we train a policy
online to imitate the expert demonstration using an OT-based
reward function with features from the learned visual encoder
(Section IV-C).

A. Robot Setup and Expert Data Collection

Our robot is an arm-hand system with a 6-DOF Jaco arm
and a 16-DOF AllegroHand (see Figure 1 (a)). The hand is
fitted with 15 XELA uSkin tactile sensors [59], each with
a 4x4 tri-axial force reading, and we place an RGB camera
in the scene to capture visual information. We collect data
using the HOLO-DEX framework [12], which uses a VR
headset to track hand pose and re-targets to a similar pose
on the robot morphology. During data collection, we record
the position and orientation of the arm’s end effector, sarm,
the positions of all of the joints on the hand, shand, as well as
the tactile and image information, τ, o. Since the robots and
sensors all return data at different frequencies, we align the
data using the collected timestamps, and combine the robot
states st = sarm

t ⊕ shand
t to produce aligned tuples (st, τt, ot).

Similar to [13], we subsample the data to 10Hz and remove
transitions where the cumulative movement is below 1 cm.

B. Representation Learning for Vision and Tactile Observa-
tions

In order to mitigate the need for explicit state estimation,
we use self-supervised learning to learn a mapping from
high dimensional observations to a lower dimensional latent
state (see Section III-A for more details). The image encoder,
which maps images ot to latents zt, is trained on demonstra-
tion data for the task and uses a combination of two losses.
The first is the InfoNCE [37] loss trained using nearby ob-
servations as positive examples, following the methodology
of Time-Contrastive Networks [44]. The second loss predicts
the change in robot state between nearby observations using
a small mlp head, ∆̂(zt, zt+k). The change loss function
is L∆(st, st+k, zt, zt+k) = ||st+k − st − ∆̂(zt, zt+k)|| and
differs from an inverse model [60] in that we predict a change
in state over multiple steps instead of a single action. Our
final loss function is

L = LNCE(zt, zt+k, {z1, . . . zn}) + λL∆(st, st+k, zt, zt+k)

For computational efficiency, we use the same observations
for both the positive samples and to predict the change in
joint angles, setting k = 5 for all our experiments. We scale
the losses to be approximately the same magnitude. For the
tactile encoder, we download and use a pretrained tactile
encoder that was trained on 2.5 hours of tactile-based play
data using self-supervised learning [13].

C. Policy Learning through Online Imitation

We utilize the FISH [14] imitation algorithm on a single
demonstrated trajectory to learn a policy (see Section III-
B for more details). The base policy we choose is simply
an open loop rollout of the expert demonstration, executing
the previously executed actions in sequence. This policy
completely fails if the environment is not the same as in
the expert demonstration, but it serves as a decent base from
which to learn a residual policy. The offset policy receives
both ot and τt, which are augmented with random resized
crops before passing to the visual and tactile encoders.
Crucially, we only use visual information, ot to calculate
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Fig. 2: Rollouts of trained policies from TAVI on six tasks. Videos are best viewed on our website https://see-to-touch.
github.io/.

the optimal-transport reward. We find that including the
tactile information in the reward results in convergence to
sub-optimal solutions like activating the touch sensors by
pinching the fingers together. Details of the reinforcement
learning (RL) agent that is used in TAVI can be found in
Appendix A.

a) Final frame matching for rewards: We differ from
FISH in that we do not use the entire length of trajectories to
calculate the reward. Instead, we match the last 10 frames of
the robot trajectory to the last frame of the expert trajectory.
While this does not give us immediate feedback if the
executed trajectory differs from the expert, the sparse reward
of distance to the expert’s final frame has enough signal to
learn to complete the tasks. Including all of the frames results
in matching starting robot frames to ending expert frames,
and vice-versa, preventing the policy from completing the
task. We further explain this behavior in Section V-E and
show an illustrative figure in Appendix B.

b) Exploration strategy: Since the method learns a
residual policy, we can naturally enable or disable learning
on subsets of the action space, i.e., we can explore along only
the dimensions of the action space that we need to. We detail
which parts of the action space are enabled in Section V. To
effectively explore the space, we use additive OU noise [61],
which prevents motor jitter.

V. EXPERIMENTAL EVALUATION

We experimentally evaluate TAVI to answer the following
questions: (a) How well does TAVI perform on dexterous
tasks? (b) Does the contrastive encoder improve visual
representation quality? (c) How well does TAVI generalize
to unseen objects?

A. Task Descriptions

We experiment with six dexterous tasks that require pre-
cise control, visualized in Figure 2.

a) Peg Insertion: The robot must locate and pick up a
peg before inserting it into a cup on the table. The cup stays
in the same position for all trials. We learn a residual policy
on the base joints of all of the fingers.

b) Sponge Flipping: The robot must find a sponge
lying flat on the table and manipulate it to balance it on
its side. This is challenging since minor errors will result in
the object tipping over. We learn a residual policy on the
base of the thumb, index, and middle fingers.

c) Eraser Turning: The robot must pick a whiteboard
eraser lying flat and rotate it 180◦ to lie flat on its opposite
face. We learn a residual policy on the last two joints of the
middle finger and the top three tip joints of the thumb.

d) Bowl Unstacking: The robot must locate a stack of
bowls and remove a bowl from the stack. This task requires
shear force to separate the bowls from one another. The
residual policy learns the side-to-side offset of the arm end
effector position and the thumb base joint.

e) Plier Picking: The robot must locate and pick up
a pair of pliers on the table. This task is especially difficult
due to the precision required when placing the fingers. The
residual policy learns offsets for the last pointer joint, the
base and tip joints of the middle finger, and the two base
joints of the thumb.

f) Mint Opening: The robot must locate and open a
metal mint box by using tips of the thumb, index and middle
finger. This task requires robot to stabilize the box with the
middle and thumb fingers and carefully opening the top of
the mint box.

B. Baselines and Evaluation Metrics

We study the effectiveness of our method and compare
against the baselines described below:

1) T-DEX [13]: We implement and run a state-of-the-
art method for learning dexterous policies that utilizes
self-supervised image and tactile encoders with nearest
neighbors imitation. For the sake of fairness, we use
the same image encoder used in TAVI.
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TABLE I: Success rates of TAVI and our baselines for evaluations run on the Allegro hand.

T-DEX [13] BC-BeT [62] Tactile Only Image + Tactile Reward AVI [14] TAVI
Peg Insertion 2/10 0/10 6/10 6/10 6/10 8/10
Sponge Flipping 1/10 0/10 8/10 4/10 3/10 8/10
Eraser Turning 2/10 0/10 0/10 2/10 0/10 5/10
Bowl Unstacking 1/10 0/10 5/10 0/10 3/10 9/10
Plier Picking 0/10 0/10 4/10 4/10 6/10 7/10
Mint Opening 4/10 0/10 0/10 5/10 1/10 7/10
Avg. Success Rate 0.16 0.0 0.38 0.35 0.31 0.73

2) BC-BeT [62]: We implement and run a state-of-the-
art behavior cloning method Behavior Transformers.
Again, we use the same encoders as our method and
do not update the encoder parameters during training.

3) Tactile Only: We only use the tactile representations
for inputting to the policy and the calculating the
optimal transport reward. This studies our choice of
having image representations in TAVI.

4) Tactile and Image Reward: To study the effect of our
choice of reward function, we experiment with calcu-
lating the optimal transport reward from both tactile
and visual features. We concatenate both features at
each timestep and then run OT matching on it.

5) No Tactile information (AVI) [14]: To study the value
of tactile feedback, we train our method without tactile
information given to the policy. While the reward
calculation is the same as our main method, the policy
must infer contact from vision alone.

a) Evaluating robot performance: We allow all online
imitation methods to train online with one expert demonstra-
tion until the reward converges or for up to 30 minutes. We
evaluate all methods by running 10 rollouts with varying
position and orientation of the manipulated objects. For
fairness, we use the same 10 positions for each method.

b) Evaluating visual representations: In order to eval-
uate our approach in learning visual representations we have
run robot experiments on 4 of our tasks with 5 different set
of encoders. In addition to the vision encoder in TAVI, we
evaluate the following encoders on our framework:

1) Contrastive Only [63]: Similar training framework
to TAVI but the loss doesn’t include the change loss
function. So the final loss only includes the InfoNCE
loss between the temporal frames.

L = LNCE(zt, zt+k, {z1, . . . zn})

2) Joint Difference [64]: Similar training framework to
TAVI but the loss doesn’t include the InfoCNE loss
function. So the final loss only includes the change
loss function.

L = λL∆(st, st+k, zt, zt+k)

3) BYOL [34]: We use the self-supervised learning al-
gorithm; Bootstrap Your own Latent (BYOL) to train
encoders on the task data.

4) BC [65]: We receive visual representations from a
simple 3-layered CNN and map them to actions applied
during demonstrations. We train this end-to-end on the
task data for each task.

TABLE II: Success rates of different visual representations on TAVI
learning framework

Encoder Plier Bowl Sponge Peg Average

TAVI 7/10 9/10 7/10 8/10 7.75/10
Contrastive Only [63] 0/10 7/10 2/10 7/10 4/10
Joint Difference [64] 4/10 7/10 6/10 5/10 5.5/10

BYOL [34] 6/10 5/10 9/10 6/10 6/10
BC [65] 0/10 6/10 3/10 6/10 4/10

Pretrained 5/10 6/10 2/10 5/10 4.5/10

5) Pretrained: We use a Resnet-18 [66] with weights pre-
trained on the ImageNet [67] task with no finetuning.

C. How well does TAVI perform on dexterous tasks?

In Table I we report the success rates of TAVI and
baselines. We see that BC-BeT is unable to complete any
of the tasks, quickly going out of distribution and failing to
recover. T-DEX is only able to solve at most 4 of the 10
runs, failing because it is unable to update the policy when
the object has moved out of the demonstration set. While the
combined image and tactile reward or tactile-only are able
to solve more tasks than T-DEX, the noise introduced into
the reward from the tactile information halves the success
rate when compared to TAVI, highlighting the importance
of computing rewards from visual information only.

AVI almost matches the performance of our method on
the peg insertion and plier picking tasks, but is unable
to succeed at all on eraser turning and mint opening and
has degraded performance on the other tasks. Neither peg
insertion nor plier picking require precise force feedback to
succeed, while eraser turning, mint opening, sponge flipping,
and bowl unstacking all require a level of precision, taking
care not to exert too much force on the manipulated object(s).
These results underscore the importance of incorporating
tactile feedback into dexterous policies.

We showcase the TAVI training rollouts and the corre-
sponding OT rewards for each task in Appendix C.

D. Does the contrastive encoder improve visual representa-
tion quality?

We report the success rates of experimented visual rep-
resentations in Table II. We observe that Pretrained, Con-
trastive Only and BC encoders are not performing well due
to failure in capturing the configuration between the object
and the robot hand. We observe that Joint Difference Only
baseline performs relatively well since the encoder learns
how to differentiate the impact of the object and actions to
the hand pose but not as high as TAVI since it’s lacking
the temporal information coming from the contrastive loss.
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Fig. 3: We show success rates of TAVI on a variety of objects not
seen during demonstration collection.

BYOL training on the task data has been our most success-
ful baseline after TAVI, we believe this is due to BYOL
augmentations being able to force the visual representations
to focus on the manipulation. Given the highest score in
these experiments we choose to train our encoders with the
combined contrastive and joint-prediction loss.

E. How does the number of frames included in the reward
impact the results?

As was mentioned in the Section IV-C, we only match
the last frame of the expert demonstration and the last 10
frames of the robot trajectory in OT reward calculation. We
ran additional experiments with all of our tasks where we
include all of the frames of both the robot and the expert
trajectory and evaluated the policy with a similar evaluation
setup. We show the results of this experiment in Table III.

TABLE III: Success rates of our learning framework with variant
number of frames included in reward calculation.

Frames Bowl Peg Sponge Mint Plier Eraser

All frames inc. 4/10 5/10 6/10 0/10 3/10 0/10
TAVI 9/10 8/10 8/10 7/10 7/10 5/10

During OT reward calculation the best plan µ⋆ that
matches two trajectories is not time-dependant, since the
matching is done regardless of the timestep of each represen-
tation, hence, when all the frames are included to the reward
calculation, policy can converge to a local minimum where
a failed robot trajectory has high matches with expert tra-
jectories that have similar frames throughout different stages
of the trajectory. That is why we observe low performance
when all the frames are included to the reward calculation,
more details are shown in Appendix B.

F. Does TAVI generalize to new objects?

We study the ability of TAVI to generalize to unseen
objects. For each task, we modify the experiment by re-
placing one of the objects with a new object with different
shape, color, and inertial properties. We run 3 new objects
(visualised in Figure 3) for the peg insertion and bowl
picking tasks, training the policy in the same manner as
the original task so it has a chance to adapt. For the bowl
unstacking task, we get a success rate of 50% and for the
peg insertion task we succeed 57% of the time. The policy
is able to generalize on some, but not all of the new objects.
When the shape or mass of the object changes substantially,

the policy is not able to offset the fingertips enough from the
base policy to complete the task.

G. Can TAVI be used for long-horizon tasks?

Due to very large action space of dexterous hands, training
long-horizon tasks is a very challenging problem which is
why one of the used approaches is to sequence different
sub-policies [68]. In order to sequence sub-policies, each
policy learned should also be robust enough for different
perturbations coming from each sub-policy.

Sponge 
πs

r(ot, τt)
Mint 

πm
r (ot, τt)

Plier 
 πp

r (ot, τt)
Concatenated Policy π*r (ot, τt)

Base 
location of 
the tasks

Fig. 4: We show an illustration of our long-horizon policy sequenc-
ing. TAVI shows robustness when different tasks are sequenced and
successfully applies the learned policies separately.

We evaluated TAVI to see if it gives robust enough
policies to sequence different tasks and give longer hori-
zon tasks. We trained 3 separate policies on our Sponge
Flipping, Plier Picking and Mint Opening tasks. We have
enabled additional axes on wrist positions during the training
and concatenated these three policies during rollout. TAVI
manages to separately flip the sponge, pick the plier and open
the mint box zero-shot. We illustrate this on Figure 4.

H. How robust is TAVI to visual perturbations?

In order to further analyze how image encoders trained
in TAVI handles changes in camera view, we ran additional
experiments for our task bowl unstacking where we move
the camera around 2cm - 15cm with different orientations
and trained TAVI with the representations received from
those camera positions. We do not collect new expert demon-
strations from the new camera positions which causes the
episode camera views to gradually drift from the expert.

TABLE IV: Success rates of TAVI with different camera views.

Positional Variations None 2cm 2-10cm 12cm+orientation

Bowl Unstacking 9/10 6/10 2/10 1/10

We see that with small variations, TAVI is still perfor-
mative. However, with larger variations, the performance
drops significantly as the vision-based representations are
not trained to be consistent from multiple-views. This causes
calculated rewards to be inconsistent with the success of the
robot trajectories which makes the policy harder to train.

VI. LIMITATIONS AND DISCUSSION

In this paper, we introduced TAVI, which leverages tac-
tile feedback for dexterous manipulation through optimal-
transport imitation learning. We demonstrated its superior
performance compared to visual-only policies, identified



challenges related to tactile information in reward calcu-
lation, and examined key components. Despite its current
strengths, we acknowledge three limitations. First, our obser-
vation representation lacks historical context; incorporating a
transformer could enhance performance but requires solving
the challenge of training with limited demonstration data.
Second, performance of TAVI seems very dependant on the
camera view due to the matching between the expert and the
trajectory. Incorporating tactile to the reward or training more
robust visual representations to different camera views could
mitigate this. Finally, the exploration mechanism requires
knowing which dimensions in the action space to enable.
Automating this process could reduce the need for domain
expertise. These areas present exciting opportunities for
extending TAVI.
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APPENDIX

A. Model Details
We use DrQv2 [69] as the reinforcement learning (RL) algorithm

to train our policy. The input to the policy is the concatenation of
the tactile and image representations. This learner uses DDPG [58]
to maximize the reward function. We showcase the parameters and
details used in Table V

Parameter Value

Optimizer Adam

Learning Rate 1e−4

Standard Dev. Schedule 1e−1

Standard Dev. Clip 3e−1

Critic Target Tau 1e−2

Update Actor Freq. 4

Update Critic Freq 2

Update Critic Target Freq. 4

Batch Size 256

Replay Buffer Size 150000

Exploration Steps 1000

Aug. (Image) RandomShiftsAug pad = 4

Expert Frame Matches 1

Episode Frame Matches 10

TABLE V: DrQv2 Hyperparameters.

B. Reward Details
In order to further support our decision on choosing the last 10

frames of the episode and the last frame of the expert demonstration,
we show the cost matrix Cij when all of the frames are included
in Figure 5 for a failed and a successful trajectory. Both of these
trajectories receive the reward of -11 with this way of calculation.
We observe that when all the frames are included, due to the
time independant nature of optimal transport, when there are close
representations in different times of the rollouts we receive high
scores matches. This problem mostly arises when the hand pose of
the trajectory and the expert rollout are similar whereas the objects
are in different positions.

In order to tackle this we are only include

C. Training Rollouts
We showcase the training rollouts of each task and the corre-

sponding rewards for each rollout in Figures [6, 7, 8, 9, 10, 11].
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Fig. 5: Cost matrix Cij for a failed and a successful trajectory. Darker colors represent low costs and lighter colors represent higher
costs. Note the large area of darker colors at the middle of the unsuccessful rollout and the larger area of darker colors at the end of the
successful rollout. When OT matching is applied these low cost areas compensate for each other giving an equal reward of -11 for both
of these demonstrations. Also note the similarity of the hand pose between the unsucessful and the expert demonstration which explains
the similarity of the representations.
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Fig. 6: Additional rollouts and corresponding rewards for the Bowl Unstacking task. Note the increase in the reward as the policy improves.
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Fig. 7: Additional rollouts and corresponding rewards for the Easer Turning task. Note the increase in the reward as the policy improves.
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Fig. 8: Additional rollouts and corresponding rewards for the Mint Opening task. Note the increase in the reward as the policy improves.
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Fig. 9: Additional rollouts and corresponding rewards for the Peg Insertion task. Note the increase in the reward as the policy improves.
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Fig. 10: Additional rollouts and corresponding rewards for the Plier Picking task. Note the increase in the reward as the policy improves.
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Fig. 11: Additional rollouts and corresponding rewards for the Sponge Flipping task. Note the increase in the reward as the policy improves.
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